

CELL ULTRASTRUCTURE

Functions of the cell membrane

- Maintaining the integrity of the cell
- Controlling movements of substances in and out of the cell
- Regulating cell-cell interactions and recognizing of antigens
- Establishing transport system for specific molecules
- Transducing extracellular signals

Cholesterol w dwuwarstwie lipidowej Schemat pokazuje jak cząsteczka cholesterolu oddziaływuje z dwoma cząsteczkami fosfolipidów w jednej warstwie dwuwarstwy lipidowej

FIGURE 4.10 The asymmetric distribution of phospholipids (and cholesterol) in the plasma membrane of human erythrocytes. (SM, sphingomyelin; PC, phosphatidylcholine; PS, phosphatidylserine; PE,

GLYCOLIPIDS

FUNCTION OF TRANSMEMBRANE PROTEINS

MEMBRANE RESTING POTENTIAL

Na*-K* pump

- Actively move ions against concentration gradient
- Create ion concentration gradients

Leak channel

- · Allow ions to diffuse down concentration gradient
- · Cause selective permeability to certain ions

małe cząsteczki
hydrofoboweO2
CO2
N2małe cząsteczki
polarneH2O
glicerol
etanol

większe cząsteczki aminokwasy polarne glukoza bez ładunku nukleotydy

K+

Uniport, symport, antiport

Uniport – primary active transport

Exercise Cytosolic dce expected by the second secon	$2H^+$ C C C C C V_0 F D D D D D D D D	$4H^+$ $a c c c c c f_0$ $b \alpha \alpha \beta F_1$ $ADP + P_i ATP$	T T T A DP + P _i
P-class pumps	V-class proton pumps	F-class proton pumps	ABC superfamily
Plasma membrane of plants, fungi, bacteria (H ⁺ pump)	Vacuolar membranes in plants, yeast, other fungi	Bacterial plasma mem- brane	Bacterial plasma mem- branes (amino acid, sugar,
Plasma membrane of higher eukaryotes (Na ⁺ /K ⁺ pump)	Endosomal and lysosmal membranes in animal cells	Inner mitochondrial membrane	and peptide transporters) Mammalian plasma
Apical plasma membrane of mammalian stomach (H ⁺ /K ⁺ pump)	Plasma membrane of osteoclasts and some	Thylakoid membrane of chloroplast	membranes (transporters of phospholipids, small lipophilic drugs, cholos
Plasma membrane of all eukaryotic cells (Ca ²⁺ pump)	kidney tubule cells		terol, other small molecules)
Sarcoplasmic reticulum membrane in muscle cells (Ca ²⁺ pump)	7		

© 2008 W. H. Freeman and Company

Digoxin – selectine Na K pump inhibitor

Inotropy is the condition of contractility of the myocardium and inotropes are substances that increase the force or energy of ventricular muscle contraction

Multidrug resistance

Symport and antiport – secondary active transport

Glucose transporters

GLUT1	Brain, mammary gland, kidney, omental fat,	Basal glucose transport across blood	
	skeletal muscle, bovine follicle, bovine ovary,	tissue barriers	
	and corpus luteum		
GLUT2	Liver, islets, small intestine, kidney	Glucose (low affinity)	_
	and jejunal region		_
GLUT3	Brain, bovine ovary, follicles and corpus luteum	Glucose (high affinity)	
GLUT4	Heart, muscle, brain and adipose tissue	Transport of glucose in all insulin-	_
		responsive tissues	
SGLT1	Intestine and kidney	Glucose (high affinity)	_

GLUT 2 and pancreatic islet beta-cells

GLUT 4 is insulin-sensitive

SGLT

What do we remember about plasma membrane?

Group 1	
Phospholipids	
Cholesterol	
Resting potential	
Sodium-potassium pump	

Group 2

Glycocalyx	
Passive difussion	
Active primary transport	
Secondary active transport	

Glucose transporters

	Localisation	Function
GLUT1		
GLUT2		
GLUT3		
GLUT4		
SGT		

ENDOCYTOSIS - energy-using process by which cells absorb molecules

- Material is engulfed in the vesicle

Clathrin-dependent endocytosis

CLATHRIN vs CAVEOLIN

ENDOSOMES

- early endosomes near the periphery of the cell NEUTRAL pH
- late endosomes deeper in the cytoplasm LOW pH

LYSOSOMES

- contain acid hydrolases (lipases, proteases, nucleases, sulfatases and glycosidases)
- pH 5.0
- digest excess or worn-out organelles (mitochondria), food particles, and engulf viruses or bacteria

Lysosomal Storage Disorders

Lucy Liu

Transport of substances into lysosomes

- may be carried out by three ways:
- Phagocytosis (viruses or bacteria)
- Autophagy (excess or senescent organells)
- Receptor-mediated endocytosis (macromolecules)

Autophagy

ENDOPLASMIC RETICULUM

Smooth endoplasmic reticulum (SER)

*Synthesis of lipids on the basis of cholesterol (components of cell membrane, steroid hormones)

* Detoxification of harmful substances

*Accumulation and storage of calcium
Rough endoplasmic reticulum (RER)

- contains **ribosomes** on the cytosolic face the sites of protein synthesis
- is the site of synthesis of proteins
- post-translational modifications of proteins

Protein synthesis

Golgi Apparatus

- flattened membrane-bounded cisternae Golgi stack
- convex cis-face, closest to the RER (entry face)
- medial face
- concave trans-face (exit face)

Function: posttranslational modification and packaging of proteins

Vesicles that transport proteins are labeled by coat proteins (according to their destination)

Types of coat proteins

- coatomer I (COP I) vesicles
 that are returned from trans-face
- coatomer II (COPII) vesicles
 between RER and cis-face
- clathrin vesicles which bud off
 the trans-face

What do we remember about endoplasmic membrane compartment?

Group 1	
Rough endoplasmic reticulum	
Endosomes	
Lysosomes	

Group 2

Smooth endoplasmic reticulum	
Golgi apparatus	
Exosomes	

PEROXISOMES

- Membrane-bound organelles.
- Present in all animal cells

PEROXISOMES contain oxidative enzymes: catalase, D-amino acid oxidase and urate oxidase

Peroxisomes (microbodies)

Urate oxidase Catalase D-amino acid oxidase

- Catabolism of long-chained fatty acids (beta oxidation)
- Forming acetyl coenzyme A (CoA)
- Forming hydrogen peroxide (H₂O₂) – detoxifies various noxious agents and kills microorganisms

PROTEASOMES

- are protein complexes
- they are located in the nucleus and the cytoplasm
- the main function of the proteasome is to degrade unneeded or damaged proteins by proteolysis

PROTEASOME - STRUCTURE

- cylindrical complex containing a "core" of four stacked rings forming a central pore

- each ring is composed of seven individual proteins

- the inner two rings are made of seven beta subunits that contain protease active sites

- the outer two rings contain a subunits whose function is to maintain a "gate"

PROTEASOMES

protein must be ubiquitinated before being degraded (several ubiquitin molecules are attached to a lysine residue of the protein to form polyubiquinated protein)
protein must be at least partially unfolded before they enter the core

Proteasome inhibitors

MITOCHONDRIA

- are membrane-bound structures
- they generate most of the cell's supply of adenosine triphosphate (ATP), used as a source of chemical energy
- the mitochondrion has its own independent genome

The structure of mitochondria

MITOCHONDRIA - FUNCTION

- outer mitochondrial membrane

- porins multipass transmembrane proteins aqueous channels (watersoluble molecules may pass)-intramembrane space resemble cytosol
- proteins responsible for the formation of mitochondrial lipids
- inner mitochondrial membrane
 - cardiolipin phospholipid (with 4 fatty acyl chains) impermeable to ions, electrons and protons
 - ATP synthase protein complex responsible for the generation of ATP from ADP and inorganic phosphate
 - respiratory chains protein complexes
- contact sites regions in which outer and inner membranes contact each other

MITOCHONDRION - MATRIX

- enzymes responsible for the degradation of fatty acids to the acetyl CoA
- cytric acid cycle (Krebs cycle) series of chemical reactions used by organisms to generate energy)
- DNA- double-stranded mitochondrial circular deoxyribonucleic acid

What do we remember about mitochondria?

Group 1	
Mitochondrial functions	
Outer mitochondrial membrane	
Inner mitochondrial membrane	

Group 2

Intermembranous space	
Mitochondrial matrix	
ATP synthase	

CELL CYTOSKELETON

Cell cytoskeleton is a network made of biological polymers. They are three main types of polymer namely microtubules, actin (thin) filaments and intermediate filaments

MICROTUBULES

- long, straight, cylindrical structures

They play key roles in:

- intracellular transport of secretory vesicles and organelles
- cell division (mitosis and meiosis) including the formation of mitotic spindles
- They also form the internal structure of cilia and flagella

Microtubule instability

Centrosome

Nucleating sites (γ tubulin ring complexes)

pair of centrioles

Microtubule-Associated Proteins (MAPs)

Motor proteins

- responsible for the intracellular movement of organelles and vesicles
- motor proteins which convert the chemical energy contained in ATP into the mechanical energy of movement.
 dynein from plus to minus end
- kinesin from minus to plus end

Structural

- Tau
- MAP2

Stabilizing

Taxol – microtubule stabiliser

Taxol – mitotic spindle poison

Cilium

The actin (thin) filaments

The actin cytoskeleton provides a structural framework for the mechanical stability of eukaryotic cells and is involved in functions including cell adhesion, motility, and division.

Actin treadmilling

Phalloidin

Spectrin – hereditary spherocytosis

Dystrophin – muscular dystrophy

spectrin cross links

INTERMEDIATE FILAMENTS

- have an average diameter of 10 nanometers, which is between that of 7 nm actin (microfilaments), and that of 25 nm microtubules

Most types of intermediate filaments are cytoplasmic, but one type, the lamins, are nuclear.

TYPES:

- cytokeratins in epithelial cells
- **desmin** in muscle cells
- vimentin in many mesodermal tissues
- GFAP (glial fibrillary acidic protein) in astrocytes and other glia
- neurofilaments in axons of vertebrate neurons
- lamins in the cell nucleus

FUNCTION OF INTERMEDIATE FILAMENTS

- provide structural support for the cell (form three-dimensional framework)
- anchor the nucleus in place
- they form the connection between the cell membrane and the cytoskeleton

Table 4.1 TYPES OF INTERMEDIATE FILAMENTS

Туре	Names	Functions
I and II	Acidic (I) and basic (II) keratins	Form complex network from nucleus to plasma membrane in epithelial cells
III	Desmin, vimentin	Support and structure
IV	Neurofilaments, synemin, syncoilin	Protect from mechanical stress and maintain structural integrity in various cell types
v	Nuclear lamina	Structural role in the nucleus of all cells
VI	Nestin	Expressed mainly in the nerve cells and is implicated in their growth

What do we remember about cytoskeleton?

Element	Description	Function
Actin filaments		
Actin binding proteins		
Intermediate filaments		

Element	Description	Function
Microtubules		
Microtubule associated proteins		
Kinesin and dynein		